Homological algebra exercise sheet Week 6

- 1. Use the Baer Criterion to show that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module, and then give an injective resolution of \mathbb{Z} .
- 2. For A an abelian group, we define its Pontrjagin dual as:

$$A^* = \operatorname{Hom}_{\operatorname{Ab}}(A, \mathbb{Q}/\mathbb{Z}).$$

Show that when A is finite, we have $(A^*)^* \cong A$, and deduce that there is an isomorphism of categories FinAb \cong FinAb^{op}, where FinAb is the category of finite abelian groups. However, find an abelian group such that $(A^*)^*$ is not isomorphic to A.

3. Let $F:\mathcal{A}\to\mathcal{B}$ be a right exact functor and $U:\mathcal{B}\to\mathcal{C}$ be an exact functor. Show that we have a natural isomorphism :

$$L_i(UF) \cong U(L_iF).$$

4. Let R be a commutative ring, and N an R-module. Show or recall that $-\otimes_R N: \text{R-Mod} \to \text{R-Mod}$ is right exact. We denote by $\operatorname{Tor}_i^R(-,N)$ the associated left derived functor.

Find a projective resolution of $\mathbb{Z}/n\mathbb{Z}$, and use it to compute $\operatorname{Tor}_i^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$ for every $i \geq 0$ and $m \in \mathbb{Z}$.